کافه کتاب

کتابفروشی اینترنتی

کافه کتاب

کتابفروشی اینترنتی

روش بنداشتی

روش بنداشتی[1]

ریاضیدانان برای کشف قضایا ممکن است از راههای آزمایش و خطا، محاسبة حالات ویژه، حدس در نتیجة الهام، و یا از هر راه دیگری استفاده کنند. روش بنداشتی روشی برای اثبات درستی نتایج است. برای برخی از نتایج مهم در ریاضیات اساساً تنها دلیلهای ناقص داده شده بوده است (خواهیم دید، که حتی اقلیدس هم در این زمینه مقصر بوده است). ولی مهم نیست، زیرا که دلیل درست، عاقبت (اغلب بسیار دیر) فراهم می‎شود و جهان ریاضی خشنود می‎گردد.

بنابراین، دلیلها به ما اطمینان می‎دهند که نتیجه‎ها درست هستند. در بسیاری از موارد این استدلالها نتایج کلیتری را عاید می‎کنند. مثلا، مصریان و هندیان به تجربه دریافته بودند که هرگاه اضلاع مثلثی 3 و 4 و 5 باشند، آن مثلث قائم الزاویه است. اما یونانیان ثابت کردند که اگر اضلاع a و b وc  از مثلثی چنان باشند که ، آنگاه مثلث قائم الزاویه است. برای کسب اطمینان از درستی این نتیجه لازم است بینهایت بار به آزمایش بپردازیم (و بعلاوه، آزمایشها تنها اندازة تقریبی اشیاء را به ما می‎‏دهند). بالاخره، استدلال بینشی شگرف از روابط بین اشیاء مختلفی که مطالعه می‎کنیم به ما می‎بخشد و ما را ملزم می‎سازد که اندیشه‎های خود را به گونه‎ای منسجم سازمان دهیم.

روش بنداشتی چیست؟ اگر بخواهم از راه استدلال محض شما را متقاعد سازم که حکم 1S را بپذیرید، باید بتوانم نشان دهم که این حکم چگونه به طور منطقی از حکم دیگر 2S، که  شما قبلاً آن را پذیرفته‎اید، نتیجه می‎شود. ولی اگر شما 2S را قبول نداشته باشید، من باید نشان دهم که 2S چگونه به طور منطقی از یک حکم دیگر 3S نتیجه می‎شود. ممکن است لازم شود این عمل را چند بار تکرار کنم تا به حکمی برسم که شما آن را می‎‏پذیرید و احتیاجی به اثبات آن نیست. حکم اخیر نقش یک بنداشت (یا اصل موضوع) را ایفا می‎کند. اگر نتوانم به حکمی برسم که شما به عنوان مبنای استدلال من بپذیرید، دچار «تسلسل» خواهم شد، یعنی باید دلیل پشت دلیل بیاورم بی آنکه پایانی داشته باشد.[2]

پس باید دو شرط مسلم شوند تا درستی برهانی را بپذیریم:

شرط 1. پذیرفتن احکامی به نام «بنداشت» یا «اصل موضوع» که به هیچ توجیه دیگری نیاز نداشته باشند.

شرط 2. توافق بر اینکه کی و چگونه حکمی «به طور منطقی» از حکم دیگر نتیجه می‎شود، یعنی توافق در برخی از قواعد استدلال.

کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بی‎نیاز به توجیهی پذیرفتنی بودند دستچین کرد، و از آنها 465 گزاره نتیجه گرفت، که بسیاری از آنها پیچیده بودندو به طور شهودی بدیهی نبودند و تمام اطلاعات زمان او را دربرداشتند. یک دلیل بر زیبایی اصول اقلیدس این است که این همه را از آن اندک نتیجه گرفته است.



[1] -axiomatic method,

[2] -و یا ممکن است در مرحله‎ای از دلیل به همان گزاره‎ای که اثبات آن مورد نظر است بازگردیم، که در این صورت می‎گوییم دچار «دور» شده‎ایم. اصولاً در این گونه موارد به جای اینکه بگوییم دچار تسلسل می‎شویم بهتر است بگوییم دچار دور یا تسلسل می‎شویم-م.