روش بنداشتی[1]
ریاضیدانان برای کشف قضایا ممکن است از راههای آزمایش و خطا، محاسبة حالات ویژه، حدس در نتیجة الهام، و یا از هر راه دیگری استفاده کنند. روش بنداشتی روشی برای اثبات درستی نتایج است. برای برخی از نتایج مهم در ریاضیات اساساً تنها دلیلهای ناقص داده شده بوده است (خواهیم دید، که حتی اقلیدس هم در این زمینه مقصر بوده است). ولی مهم نیست، زیرا که دلیل درست، عاقبت (اغلب بسیار دیر) فراهم میشود و جهان ریاضی خشنود میگردد.
بنابراین، دلیلها به ما اطمینان میدهند که نتیجهها درست
هستند. در بسیاری از موارد این استدلالها نتایج کلیتری را عاید میکنند. مثلا،
مصریان و هندیان به تجربه دریافته بودند که هرگاه اضلاع مثلثی 3 و 4 و 5 باشند، آن
مثلث قائم الزاویه است. اما یونانیان ثابت کردند که اگر اضلاع a و b وc از مثلثی
چنان باشند که ، آنگاه مثلث قائم الزاویه است. برای کسب اطمینان از
درستی این نتیجه لازم است بینهایت بار به آزمایش بپردازیم (و بعلاوه، آزمایشها
تنها اندازة تقریبی اشیاء را به ما میدهند). بالاخره، استدلال بینشی شگرف از
روابط بین اشیاء مختلفی که مطالعه میکنیم به ما میبخشد و ما را ملزم میسازد که
اندیشههای خود را به گونهای منسجم سازمان دهیم.
روش بنداشتی چیست؟ اگر بخواهم از راه استدلال محض شما را متقاعد سازم که حکم 1S را بپذیرید، باید بتوانم نشان دهم که این حکم چگونه به طور منطقی از حکم دیگر 2S، که شما قبلاً آن را پذیرفتهاید، نتیجه میشود. ولی اگر شما 2S را قبول نداشته باشید، من باید نشان دهم که 2S چگونه به طور منطقی از یک حکم دیگر 3S نتیجه میشود. ممکن است لازم شود این عمل را چند بار تکرار کنم تا به حکمی برسم که شما آن را میپذیرید و احتیاجی به اثبات آن نیست. حکم اخیر نقش یک بنداشت (یا اصل موضوع) را ایفا میکند. اگر نتوانم به حکمی برسم که شما به عنوان مبنای استدلال من بپذیرید، دچار «تسلسل» خواهم شد، یعنی باید دلیل پشت دلیل بیاورم بی آنکه پایانی داشته باشد.[2]
پس باید دو شرط مسلم شوند تا درستی برهانی را بپذیریم:
شرط 1. پذیرفتن احکامی به نام «بنداشت» یا «اصل موضوع» که به هیچ توجیه دیگری نیاز نداشته باشند.
شرط 2. توافق بر اینکه کی و چگونه حکمی «به طور منطقی» از حکم دیگر نتیجه میشود، یعنی توافق در برخی از قواعد استدلال.
کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بینیاز به توجیهی پذیرفتنی بودند دستچین کرد، و از آنها 465 گزاره نتیجه گرفت، که بسیاری از آنها پیچیده بودندو به طور شهودی بدیهی نبودند و تمام اطلاعات زمان او را دربرداشتند. یک دلیل بر زیبایی اصول اقلیدس این است که این همه را از آن اندک نتیجه گرفته است.
[1] -axiomatic method,
[2] -و یا ممکن است در مرحلهای از دلیل به همان گزارهای که اثبات آن مورد نظر است بازگردیم، که در این صورت میگوییم دچار «دور» شدهایم. اصولاً در این گونه موارد به جای اینکه بگوییم دچار تسلسل میشویم بهتر است بگوییم دچار دور یا تسلسل میشویم-م.