کافه کتاب

کتابفروشی اینترنتی

کافه کتاب

کتابفروشی اینترنتی

ترجمه عربی به فارسی

66122516083187301141.png


برای ترجمه عربی به فارسی متون خو د به وبسایت ما مراجعه نماید

ترجمه عربی به فارسی تخصصی و روان

ترجمه عربی به فارسی متون قرانی فلسفی و ..... در تمامی زمینه ها

برای مشاهده لیست قیمت و سفارش آنلاین ترجمه از وبسایت موسسه دیدن فرمائید

هنگام ثبت نام برای گرفتن تخفیف از کد معرف10454استفاده نمایید

www.irantypist.com

        09199170040 ساعات غیر اداری

02147624763ساعات اداری

هنگام ثبت نام برای گرفتن تخفیف از کد معرف 10454 استفاده نمایید

هم اکنون آنلاین هستیم،پشتیبانی24 ساعته ، گارانتی 72 ساعته،5000 مترجم وتایپیست متخصص در تمامی رشته ها

ترجه عربی به فارسی را در متون به ما بسپارید

ترجمه عربی به فارسی شعر و اشعار با اصطلاحات صقیل

ترجمه عربی به فارسی ضرب المثل

 

66122516083187301141.png

ارشمیدس


ارشمیدس

 بزرگترین دانشمند عهد عتیق    287 تا 212 قبل از میلاد  او به معنی تمام یک نابغه بود و بسیار آزاد می  اندیشید و اسیر موانع زمان خود نمیشد .  اگر فهرستی از سه ریاضی دان بزرگ جهان تهیه کنیم باید ارشمیدس در میان آنان باشد و دو تن دیگر  نیوتن (Newtin ) و گوس (Gauss). او هنگامی که در محاسبات خود غوطه ور بود  همه چیز خود را بکلی فراموش میکرد . نقل است که وقتی در حمام قانون مشهور خود را کشف کرد لخت از حمام بیرون دوید و فریاد زد اوره کا  اوره کا یعنی   یافتم  یافتم

ارشمیدس دوهزار سال قبل از نیوتن و لایب نیتز موفق به اختراع حساب انتگرال شد و در حل یکی از مسائل نکته ای را به کار برد که میتوان او را از پیشگامان حساب دیفرانسیل دانست .  دانش و نبوغ او در ساخت منجنیق و فلاخن ها و انواع وسائل دیگر در دفاع از شهری که در آن زندگی میکرد نیز بسیار مشهور میباشد .

ترجمه فارسی به انگلیسی

05680221995222949946.png

با ترجمه native و original فارسی به انگلیسی را با ما تجربه نمایید!

اگر می خواهید مقاله فارسی خود را به انگلیسی برگردانید و در ژورنال های معتبر جهانی به چاپ برسانید نیاز به یک مترجم متخصص در رشته خودتان دارید تا با اضطلاحات رشته شما آشنا باشد و بتواند به صورتی ترجمه نماید تا قابل ارائه در ژورنال های بین المللی باشد

برای مشاهده لیست قیمت و سفارش آنلاین ترجمه از وبسایت موسسه دیدن فرمائید

هنگام ثبت نام برای گرفتن تخفیف از کد معرف10454استفاده نمایید

www.irantypist.com

        09199170040 ساعات غیر اداری

02147624763ساعات اداری

هنگام ثبت نام برای گرفتن تخفیف از کد معرف 10454 استفاده نمایید

هم اکنون آنلاین هستیم،پشتیبانی24 ساعته ، گارانتی 72 ساعته،5000 مترجم وتایپیست متخصص در تمامی رشته ها

ترجمه فارسی به انگلیسی مقاله تمامی رشته ها

ترجمه فارسی به انگلیسی کتاب

ترجمه فارسی به انگالیسی نامه تجاری

ترجمه فارسی به انگلیسی  نامه اداری

05680221995222949946.png

هندسة اقلیدس

منشأ هندسه

واژة «ژئومتری» از دو واژه یونانی؛ ژئو، به معنی زمین، و متراین، به معنی اندازه‎گیری آمده است؛ هندسه در اصل علم اندازه‎گیری زمین بوده است. هرودت، مورخ یونانی (سدة پنجم قبل از میلاد)، پیدایش هندسه را به مساحان مصری نسبت می‎دهد. ولی تمدنهای کهن دیگر (بابلی، هندی، چینی) هم اطلاعات هندسی زیاد داشته‎اند.

هندسة پیشینیان در واقع گرد‎اوری از روشهای «قاعدة سرانگشتی» بود که از راه آزمایش. بررسی شباهتها، حدسها و شهودهای اتفافی، دست یافتن به آنها میسر شده بود. خلاصه، هندسه موضوعی تجربی بود که جوابهای تقریبی آن معمولاً برای مقاصد عملی کافی بودند. بابلیهای 2000 تا 1600 سال پیش از میلاد مسیح محیط دایره را 3 برابر قطرش می‎گرفتند. یعنی p را مساوی 3 اختیار می‎کردند. این همان مقداری است که ویتروویوس[1] معمار رومی به آن داده بود و در نوشته‎های چینی همان مقدار پیدا شده است. حتی یهودیان باستانی این مقدار را مقدس می‎شمردند و می‎پنداشتند که کتاب مقدس آن ار تثبیت کرده است (کتاب اول پادشاهان، باب هفتم، آیة بیست و سوم) و تلاش خاخام نهه میا[2] برای تبدیل  p به 7/22 به نتیجه نرسیده بود. مصریان سال 1800 پیش از میلاد، طبق پاپیروس رایند[3] مقداری تقریبی  p را چنین می‎گرفته‎‏اند:

[4]

حدسهای مصریان در پاره‎ای از موارد درست و در پاره‎ای دیگر نادرست بودند. یکی از کارهای برجستة آنان پیدا کردن دستور صحیح برای حجم هرم ناقص مربع القاعده بوده است. از سوی دیگر، چنین می‎‏پنداشتند که دستوری که برای مساحت مستطیل صحیح است برای هر چهار ضلعی نامشخص نیز می‎تواند صحیح باشد. هندسة مصری به معنی یونانی کلمه علم نبود، بلکه صرفاً انبانی بود پر از قواعد محاسبه، بی‎هیچ موجبی یا توجیهی.

بابلیان در حساب و جبر خیلی از مصریان پیشرفته‎تر بودند. وانگهی، قضیة فیثاغورس را که در هر مثلث قائم الزاویه مربع طول وتر مساوی با مجموع مربعات طولهای دو ضلع دیگر است خیلی پیش از آنکه فیثاغورس به دنیا بیاید می‎دانستند. تحقیات اخیر اتونویگه باوئر[5] تأثیر جبر بابلیان بر ریاضیات یونانی را که قبلاً نادانسته بود مکشوف ساخته است.

ولی یونانیان. و پیش از همه طالس ملطی،[6] اصرار می‎ورزیدند که احکام هندسی باید از راه استدلال قیاسی ثابت شوند نه از راه آزمایش و خطا. طالس با محاسبات قسمتی درست و قسمتی نادرست که از ریاضیات بابلی و مصری در دست بود آشنایی داشت. وی ضمن کوشش برای تمیز نتایج درست از نادرست، نخستین هندسة منطقی را بنیاد نهاد. (طالس به سبب پیشگویی خورشیدگرفتگی سال 585 پیش از میلاد نیز مشهور است). استخراج منظم قضایا از راه اثبات، از مشخصات ریاضیات یونانی و کاملا تازه بوده است.

نظام بخشی و تابع اصول سازی که با طالس آغاز شده بود، مدت دو سده توسط فیثاغورش و شاگردانش ادامه یافت. معاصران فیثاغورش در او به دیدة پیامبری دینی می‎نگریستند. او از پیروان خود یک «جمعیت برادری» تشکیل داد که آداب تهذیب و تزکیه‎ای خاص خود داشت، و پیرو عقاید گیاهخواری و اشتراک اموال بود. تمایز فیثاغورسیان از دیگر گروههای مذهبی در این بود که آنان اعتلای روح و یگانگی با خدا را از راه مطالعة موسیقی و ریاضی میسر می‎دانستند. در موسیقی، فیثاغورس نسبتهای صحیح فواصل هارمونیک را حساب کرد. در ریاضیات، خواص مرموز و شگفت‎انگیز اعداد را تعلیم می‎داد. کتاب هفتم اصول اقلیدس که کتابی در بارة نگرة اعداد است، در مکتب او آموخته می‎شد.

زمانی که فیثاغورسیان طولهای کنگ، نظیر  را کشف کردند به سختی یکی خوردند (¬فصل دوم صفحات 34-35). در ‎آغاز کوشیدند که این کشف را پوشیده نگاه دارند. پروکلوس[7] مورخ می‎نویسد: «هم می‎دانیم مردی که نخستین بار نگرة اعداد کنگ را آشکار ساخت هنگام غرق یک کشتی از میان رفت، تا چیزی که بیان نشدندی و تصور ناپذیر است برای همیشه پوشیده بماند». از آنجایی که فیثاغورسیان  را عدد نمی‎شمردند، جبر خود را به صورت هندسی درآوردند تا بتوانند  و طولهای کنگ دیگر را به توسط پاره خط (مثلاً  را با قطر مربعی به ضلع واحد) نشان دهند.

پی‎ریزی منظم هندسة مسطحه توسط مکتب فیثاغورش را بقراط ریاضیدان (با طبیبی به همین نام خلط نشود) در حدود سال 400 پیش از میلاد مسیح در کتاب اصول سروصورتی داد. با اینکه این کتاب گم شده است، می‎توانیم با اطمینان خاطر بگوییم که قسمت اعظم کتابهای اول تا چهارم اصول اقلیدس را، که یک سده بعد منتشر شده، دربرداشته است. فیثاغورسیان هرگز قادر نبودند نگرة تناسبهایی را که بر طولهای کنگ نیز جاری باشد بسط دهند. این کار بعداً توسط ائودوکسوس،[8] که نگر‎ه‎اش در کتاب پنجم اصول اقلیدس گنجانیده شده است، انجام گرفت.

سدة چهارم پیش از میلاد مسیح ناظر شکوفایی آکادمی علوم و فلسفة افلاطون (که در حدود سال 387 پیش از میلاد بنیاد نهاده شد) بود. افلاطون در کتاب جمهوری می‎نویسد: «مطالعة ریاضیات دستگاهی ذهنی را توسعه می‎دهد و به کار می‎اندازد که ارزش آن از هزار چشم بیشتر است، زیرا که درک حقیقت فقط از راه ریاضی میسر است». افلاطون می‎آموخت که جهان اندیشه مهمتر از جهان مادی حواس است. زیرا که این جهان سایة جهان اولی است. جهان مادی غاری است ناروشن که بر روی دیوارهای آن تنها سایه‎های جهان واقعی خارج را که به نور خورشید روشن شده است، می‎بینیم. خطاهای حواس باید از راه تمرکز فکر اصلاح شوند، که خود این تمرکز از راه مطالعة ریاضیات بهتر میسر می‎‏شود. روش سقراطی محاوره اصولا روش اثبات نامستقیم است، که با آن نشان داده می‎شود که حکم زمانی نادرست است که به تناقضی منجر شود. افلاطون کراراً اثبات کنگ بودن طول قطر مربعی به اضلاع واحد را به عنوان مثالی برای یک روش اثبات نامستقیم (()برهان خلف، فصل دوم، صفحات 23-35) آورده است. نکته اینجاست که این کنگ بودن طول هرگز نمی‎توانسته از راه‎ اندازه‎گیریهای عینی، که همیشه متضمن یک حاشیة کوچک تجربی خطاست، کشف شود.

اقلیدس شاگر مکتب افلاطون بود. در حدود 300 سال پیش از میلاد روش قاطع هندسة‌ یونانی و نگرة اعداد را در اصول سیزده جلدیش منتشر کرد. با تنظیم این شکاهار، اقلیدس تجربه و کارهای مهم پیشینیان خود در سده‎های جلوتر را گرد هم آورد: تجارب فیثاغورسیان را در کتابهای اول تا چهارم و هفتم و نهم؛ نتایج کارهای آرکیتاس[9] را در کتاب هشتم؛ کارهای ائودوکسوس را در کتابهای پنجم، ششم، دوازدهم، و کارهای تئه تتوس[10] را در کتابهای دهم و سیزدهم. کتاب اقلیدس چنان به طور کامل جانشین کوششهای پیشین در شناسانیدن هندسه شد که کمتر نشانه‎ای از آن کوششها به جا ماند. جای تأسف است که بازماندگان اقلیدس قادر نبودند حق تألیف کتاب او را گرد‎آوری کنند؛ چون نامبرده مؤلفی است که اثرش بیش از هرکسی در تاریخ بشریت خوانده شده است. روش او در هندسه متجاوز از دو هزار سال بر تعلیم این ماده مسلط بود. وانگهی، روش بنداشتی که اقلیدس به کاربرد الگویی است برای آنچه که ما امروز «ریاضیات محض[11]» می‎نامیم. «محض» به معنی «اندیشة محض» است: هیچ تجربة برای تحقیق درستی احکام لازم نیست تنها باید مراقب استدلال در اثبات قضایا بود.

اصول اقلیدس از این حیث هم «محض» است که متضمن هیچ کاربرد علمی نیست؛ البته، هندسة اقلیدسی مورد استعمال بسیار در مسائل عملی مهندسی داشته است، ولی در اصول اشاره‎ای به آنها نشده است. در افسانه آمده است که یکی از آموزندگان مبتدی هندسه از اقلیدسی پرسید: «از آموختن این مطالب چه عاید من می‎شود؟» اقلیدس غلامش را خواند و گفت: «سکه‎ای به او بده، چون که می‎خواهد از آنچه که فرا می‎گیرد چیزی عایدش شود». این گونه تلقی از کاربرد ریاضیات در میان بسیاری از ریاضیدانان محض تا به امروز متداول مانده است آنها ریاضیات را صرفاً برای خودش، و برای زیبایی و ظرفات ذاتیش فرا می‎گیرند.

چنانکه بعداً خواهیم دید، جای شگفتی است که ریاضیات محض اغلب کاربردهایی پیدا می‎کند که خالق آن هرگز خوابش را هم نمی‎دیده است دورنمای «غیر عملی» ریاضیات محض، در نهایت، برای اجتماع مفید است. گذشته از آن، آن بخشهایی از ریاضیات هم که «کاربسته» نبوده‎اند برای اجتماع ارزش دارند، خواه به عنوان آثاری زیبا که با هنر و موسیقی قابل مقایسه‎اند و خواه از لحاظ سهم بزرگی که در بسط فهم و خود‎‏آگاهی انسان داشته‎اند.[12]



[1] -Vitruvius

[2] -Nebemiah

[3] -طوماری در مصر پیدا شده که از کهنترین استاد ریاضیات در مصر باستان است و در سال 1858 عتیقه فروش اسکاتلندی به نام الکساندر هنری رایند آن را خریداری کرد و از این رو به نام او مشهور شد م.

[4] -در سالهای اخیر مقدار تقریبیp با تعداد ارقام اعشاری زیاد به توسط رایانه‎ها حساب شده است و اندازة آن تا پنج رقم اعشاری تقریب 14159ر3 است. در 1789 یوهان لامبرت ثابت کرد که p مساوی هیچ کسری (عدد گویا) نیست. و در 1822 لیندمان ثابت کرد که p عددی است غیر جبری. بدین معنی که در هیچ معادلة جبری با ضرایب گویا صدق نمی‎کند

[5] -Ctto Neugebauer

[6] -Milete

[7] -Proclus

[8] -Eudoxus

[9] -Archytas

[10] -Theaetetus

[11] -pure mathematics

[12] -برای کسب اطلاعات بیشتر در زمینة‌ ریاضیات قدیم به کتاب بارتل ون در وردن Bartel van der Waerden به نام Science Awakening (آکسفورد، یونیورسیتی، پرس انتشارات دانشگاه آکسفورد 1961) مراجعه کنید.

ترجمه متن آنلاین با تخفیف

07921556722566935518.png



برای ترجمه متن به صورت آنلاین به وبسایت ما مراجعه نمایید

آیا می خواهید متن خودتان را به صورت آنلاین ترجمه نمایید؟

مترجم را در کنار خود اساس خواهید نمود و به ترجمه متن آنلاین خود خواهید پرداخت

برای مشاهده لیست قیمت و سفارش آنلاین ترجمه از وبسایت موسسه دیدن فرمائید

برای سفارش ترجمه ابتدا بایستی درسایت ایرانتایپیست ثبت نام کنیدوبرای خودحساب کاربری ایجادکنیدهنگام ثبت نام برای گرفتن تخفیف از کد معرف10454استفاده نمایید

www.irantypist.com

        09199170040 ساعات غیر اداری

02147624763ساعات اداری

هنگام ثبت نام برای گرفتن تخفیف از کد معرف 10454 استفاده نمایید

هم اکنون آنلاین هستیم،پشتیبانی24 ساعته ، گارانتی 72 ساعته،5000 مترجم وتایپیست متخصص در تمامی رشته ها

ترجمه متن آنلاین تخصصی و ارزان و مطمئن را به موسسه ما بسپارید

 

07921556722566935518.png